IEEE论文从零入门指南

1 会议参考

确定希望投稿的会议或期刊。

资源


2 LaTeX模板

  • 注意:模板是根据每个会议特定的。可以咨询师兄师姐们是否有现成的模板。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
\documentclass[conference]{IEEEtran}
%\documentclass[journal,12pt,draftclsnofoot,onecolumn]{IEEEtran}
%\documentclass[journal]{IEEEtran}
\usepackage{algorithm,algorithmic,amsbsy,amsmath,amssymb,epsfig,bbm,mathrsfs,fancyhdr,fancyvrb,subfigure,url,cite,multirow,xcolor}
\usepackage{graphicx}
\usepackage{epstopdf}
\usepackage{setspace}
\allowdisplaybreaks

\newcommand{\alglabel}[1]{\newcounter{#1}\setcounter{#1}{\value{ALC@line}}}
\newcommand{\algref}[1]{\arabic{#1}}

\newcommand{\nn}{\nonumber}
\newcommand{\beq}{\begin{equation}}
\newcommand{\eeq}{\end{equation}}
\newcommand{\beqn}{\begin{eqnarray}}
\newcommand{\eeqn}{\end{eqnarray}}

\usepackage{amsmath}
\newtheorem{thm}{\protect\theoremname}
\newtheorem{prop}{\protect\propositionname}
\newtheorem{rem}{\protect\remarkname}
\newtheorem{lem}{\protect\lemmaname}
\newtheorem{cor}{\protect\corollaryname}
\newtheorem{myDef}{\protect\Definition}
\providecommand{\theoremname}{\textbf{Theorem}}
\providecommand{\propositionname}{\textbf{Proposition}}
\providecommand{\remarkname}{\textbf{Remark}}
\providecommand{\lemmaname}{\textbf{Lemma}}
\providecommand{\corollaryname}{\textbf{Corollary}}
\providecommand{\Definition}{\textbf{Definition}}


\renewcommand{\algorithmicrequire}{\textbf{Initialization:}}
\newcommand{\algorithmiclastcon}{\textbf{Lastcon:}}
\newcommand{\lastcon}{\item[\algorithmiclastcon]}

\newenvironment{proof}[1][Proof]{\begin{trivlist}
\item[\hskip \labelsep {\bfseries #1}]}{\end{trivlist}}
\newenvironment{definition}[1][Definition]{\begin{trivlist}
\item[\hskip \labelsep {\bfseries #1}]}{\end{trivlist}}
\newenvironment{example}[1][Example]{\begin{trivlist}
\item[\hskip \labelsep {\bfseries #1}]}{\end{trivlist}}
\newenvironment{remark}[1][Remark]{\begin{trivlist}
\item[\hskip \labelsep {\bfseries #1}]}{\end{trivlist}}

\hyphenation{optical networks semiconductor}
\begin{document}

\title{Full-duplex Heterogeneous Cellular Networks}
\author{
\IEEEauthorblockN{
XXX\IEEEauthorrefmark{2}\IEEEauthorrefmark{1},
and XXX\IEEEauthorrefmark{3}} \\
\IEEEauthorblockA{
\IEEEauthorrefmark{2}
XXX\\
\IEEEauthorrefmark{1}
XXX\\
\IEEEauthorrefmark{3}
XXX\\
Emails: \{XXX\}@XXX
and XXX@XXX}
} \maketitle

\begin{abstract}
We study the joint user association and resource allocation problem in both uplink (UL) and downlink (DL) for full-duplex heterogeneous cellular networks...
\end{abstract}

\begin{IEEEkeywords}
Heterogeneous cellular networks, Full-duplex, Decoupled multiple association, Resource allocation, Matching theory.
\end{IEEEkeywords}

\section{Introduction}
\IEEEPARstart{W}{ith} the rapid proliferation of smart mobile devices and the surging requirement for limited licensed spectrum, small-cell base stations (SBSs) have been densely deploying to cooperate with traditional macro-cell base stations (MBSs), which are distinct in the transmission powers and coverage sizes~\cite{Agiwal2016,Kamel2016}. These heterogeneous cellular networks (HCNs) can effectively offload user equipments (UEs) from MBSs to SBSs, wherein the same channels can be reused and shared for high spectrum efficiency. Moreover, several new techniques can be introduced to further improve the performance. For example, full-duplex (FD) scheme, which allows simultaneous transmission and reception of wireless signals in the same frequency band~\cite{Sabharwal2014}, has been viewed as a promising potential to integrate into HCNs. And the spectral efficiency can be improved as investigated in~\cite{Thilina2015}.

The main contributions of this paper can be summarized as follows:
\begin{itemize}
\item We develop a framework for decoupled multiple association mechanism (DMA) and resource allocation for a full-duplex heterogeneous cellular network. In this framework, we jointly optimize the DMA, subchannel allocation and power allocation problem in both UL and DL to maximize the sum-rate of the overall network.
\item Extensive numerical results are provided to demonstrate the superiority of the proposed approach in terms of the overall network's sum-rate in UL and DL, respectively. By comparing with the existing user association schemes, the performance improvement of DMA is also illustrated.
\end{itemize}

The remainder of this paper is structured as follows. The related work is shown in Section \uppercase\expandafter{\romannumeral2}. Section \uppercase\expandafter{\romannumeral3} describes the system model, including the network deployment, the intercell interference and utility function formulation. In Section \uppercase\expandafter{\romannumeral4}, a joint optimization problem is formulated and the four-sided matching game approach is proposed. In Section \uppercase\expandafter{\romannumeral5}, a low-complexity four-sided stable matching algorithm is developed. Numerical results and analysis are presented in Section \uppercase\expandafter{\romannumeral6}. Finally, conclusions are drawn in Section \uppercase\expandafter{\romannumeral7}.


\section{System Model}
\subsection{Network Model}
\begin{table}
\caption{List of Key Notations}
\label{table2}
\begin{tabular}{p{45pt}p{180pt}}
\hline\noalign{\smallskip}
Notation & Definition \\
\noalign{\smallskip}\hline\noalign{\smallskip}
$\mathcal{I} $ & the set of UEs \\
$\mathcal{J} $& the set of BSs \\
$\mathcal{J}_{s}$ & the set of SBSs\\
$\mathcal{J}_{m} $ & the set of MBSs \\
$q_{i}^{(\cdot)}$ & the quota for associating with UEs \\
$q_{j}^{(\cdot)}$ & the quota for associating to BSs\\
$\mathcal{L} $ & the set of power levels \\
$\mathcal{K} $& the set of subchannels\\
$\mathcal{P}_{i} $ & the set of the power levels of UEs \\
$\mathcal{P}_{j} $ & the set of the power levels of BSs \\
$P_{i} $ & the maximum transmit power of each UE $i$ \\
$P_{j} $ & the maximum transmit power of each BS $j$ \\
$G_{u,v,k}$ & the channel gain between transmitter $u$ and receiver $v$ on the subchannel $k$\\
$h_{u,v,k}^{2}$ & the channel coefficient between transmitter $u$ and receiver $v$ on the subchannel $k$\\
$U_{i,j,k,l}^{(\cdot)}$ & the data rate of UE $i$ associating with BS $j$ on the subchannel $k$ in the UL or in the DL\\
${\rm SINR}_{i,j,k,l}^{(\cdot)}$ & the SINR in the UL or in the DL\\
$W_{i,j}$ & the bandwidth occupied by UE $i$ associating with BS $j$\\
$\varepsilon$ & signifies the self-interference cancellation capability of the UE or BS \\
$\sigma$ & the noise \\
\hline
\end{tabular}
\end{table}
We consider a heterogeneous cellular network composed of an MBS, multiple SBSs and UEs. The sets of UEs and BSs are denoted as $\mathcal{I} = \{1,2,3...,I\}$ and $\mathcal{J} = \{1,2,3...,J\}$, respectively. The SBS is denoted as $j_{s} \in \mathcal{J}_{s}$, and the MBS is denoted as $ j_{m}\in \mathcal{J}_{m}$, $\mathcal{J} = \mathcal{J}_{s} \cup \mathcal{J}_{m}$. A UE can be associated with multiple BSs in the UL and DL, respectively. And each BS $ j $ (an SBS or an MBS) is given the quotas for associating with UEs which are represented by $q_j^{(\cdot)}$. When transmitting in the UL, a UE can choose at most $q_i^u$ BSs to associate. Similarly, when transmitting in the DL, a UE can choose at most $q_i^d$ BSs to associate. Meanwhile, the shortened communication distance among nodes also create the conditions for the application of FD communication in the considered model. For spectrum reuse, we consider that both SBSs and UEs are capable of performing FD communication. For example, UE$_{1}$ and BS$_{4}$ shown in Fig.~\ref{system}, simultaneous transmissions in UL and DL are allowed. Note that the communication between the MBS and the UE still applies half-duplex mode for avoiding the relatively large self-interference. Major notations used in this paper are given in Table \uppercase\expandafter{\romannumeral2}.

\begin{figure}[!t]
\centering
\includegraphics[width=3.3in]{eps/system.eps}
\caption{A UE can be associated with multiple BSs, one subchannel and one power level.}
\label{system}
\end{figure}

\begin{equation}
\begin{split}
F_{j}^{self}=\frac{p_{j,k}}{\varepsilon}\beta_{j}.
\end{split}
\label{Fj-self}
\end{equation}
where $\theta_{i',j',k}^{(\cdot)}\in \{0,1\}$ if $\theta_{i',j',k}^{(\cdot)}=1$ which means that a subchannl $k$ is allocated for UE $i'$ by BS $j'$ and $\theta_{i',j',k}^{(\cdot)}=0$ otherwise. $\beta_{j}=0$ if $j \in \mathcal{J}_{m}$\footnote{Since the MBS is restricted in half-duplex mode, the self-interference is absent from each MBS in the same frequency band.}, $\beta_{j}=1$ if $ j \in \mathcal{J}_{s}$, and $\varepsilon$ is the self-interference cancellation capability of the UE or BS.


\subsection{Problem Formulation}
In this part, we describe the formulation of joint decoupled multiple association, subchannel allocation and power allocation problem. The purpose is to maximize the sum-rate of the UEs in UL and DL by appropriately associating to BSs, allocating subchannels and power levels. Accordingly, an optimization problem is formulated as follows:
\begin{equation}
\begin{split}
\textup{max} \quad & \sum_{i=1}^{I}\sum_{j=1}^{J}\sum_{k=1}^{K}\sum_{l=1}^{L}x_{i,j}^{u}\theta_{i,j,k}^u\ U_{i,j,k,l}^u + x_{i,j}^{d}\theta_{i,j,k}^d\ U_{i,j,k,l}^d\\
\textup{s.t.} \quad C1: & \sum_{i=1}^{I}\theta_{i,j,k}^u\leq \ 1 \ ,\sum_{i=1}^{I} \theta_{i,j,k}^d\leq \ 1 \ ,\forall \ j \in \mathcal{J}_{s}, k , l,\\
C2: & \sum_{i=1}^{I}(\theta_{i,j,k}^u + \theta_{i,j,k}^d)\leq \ 1 \ ,\forall \ j \in \mathcal{J}_{m}, k, l,\\
C3: &\sum_{j=1}^{J} \theta_{i,j,k}^u\leq \ 1 \ , \sum_{j=1}^{J} \theta_{i,j,k}^d\leq
\ 1 \ , \forall \ i, k,l,\\
C4: &\sum_{i=1}^{I} x_{i,j}^{u}\leq \ q_{j}^{u} , \sum_{i=1}^{I} x_{i,j}^d\leq
\ q_{j}^{d} \ , \forall \ j, \\
C5: & \sum_{j=1}^{J} x_{i,j}^{u}\leq \ q_{i}^{u}, \sum_{j=1}^{J} x_{i,j}^d\leq
\ q_{i}^{d} , \forall \ i, \\
C6: &\ \theta_{i,j,k,l}^{(\cdot )}\in \{ 0,1\}, x_{i,j}^{(\cdot )} \in \{ 0,1\} \ , \forall \ i, j, k,l,\\
C7: &\ p_{i,k}=\sum_{j=1}^{J}\sum_{l=1}^{L}p_{i,l}\theta_{i,j,k,l}^{u}\ ,p_{j,k}=\sum_{j=1}^{J}\sum_{l=1}^{L}p_{j,l}\theta_{i,j,k,l}^{d} ,\ \\
C8: &\sum_{k=1}^{K} p_{i,k}\leq \ P_{i} \ , \sum_{k=1}^{K} p_{j,k}\leq
\ P_{j} \ , \forall \ i, j.
\end{split}
\label{maximize}
\end{equation}

It can be observed that the optimization problem given in ($\ref{maximize}$) is a combinatorial $0$-$1$ integer non-linear programming problem which is NP-complete. And for DMA scheme in full-duplex networks, it is difficult to obtain the exact solution of the original problem in reasonable time due to the complicated association process and combinatorial characteristics. In this regard, we adopt matching theory to develop an efficient approach for obtaining a suboptimal solution which will be shown in the next section.

\section{Solutions and Implementation Issues}

In previous many-to-many matching games, there are only two distinct types of players, which is obviously not suitable for joint user association and resource allocation issue. And the UEs, the BSs, the subchannels and power levels are four sets of players to be matched with each other to achieve the maximum sum-rate, which involves a multivariate matching process.

In this regard, we first propose a novel four-sided matching game to model the many-to-many matching among four types of players (i.e., the UEs, BSs, subchannels and power levels). Then the stable matching is investigated and viewed as the optimal solution to the formulated problem. To obtain the optimal matching, a low-complexity four-sided stable matching algorithm is developed to enable the players to make decisions for DMA and resource allocation. Finally, some implementation issues of the proposed algorithm are analyzed.

\begin{myDef}
A four-sided many-to-many matching $\Phi^{(\cdot)} = (UE_{i}, BS_{j}, SC_{k},PL_{l})$ of the UARA can be defined as a function from the set $ \mathcal{I}\cup \mathcal{J} \cup \mathcal{K} \cup \mathcal{L}$ mapped into the set $ \mathcal{I}\cup \mathcal{J} \cup \mathcal{K} \cup \mathcal{L}$, and satisfy:.....
\end{myDef}
The conditions 1)-6) in Definition 1 correspond to the constraints in ($\ref{maximize}$).

\begin{enumerate}

\item The $UE_{i}$ connect to the new match $D(UE_{i})$ on the basis of original match, makes the $UE_{i}$ has increased overall utility value in the uplink and downlink, $UE_{i} \in \Phi _{block} ^ {(\cdot)}$;

\item The $UE_{i}$ delete the one of the matching combination from original match $\Phi ^ {(\cdot)} (UE_{i})$ and be associated with the new match $D(UE_{i})$, namely swap matching, makes the $UE_{i}$ has increased overall utility value in the uplink and downlink, $UE_{i} \in \Phi _{block} ^ {(\cdot)}$;

\item All matches in the network after new match or swap match meet the constraints of channel orthogonality and power in definition 1, and the total utility value of all users in the network are increased.

\end{enumerate}

\begin{figure}[!t]
\centering
\includegraphics[width=3.6in]{eps/block.eps}
\caption{An illustrative example of blocking matching.}
\label{block}
\end{figure}
\begin{myDef}
When there is no blocking matching in the system, that is, the total utility value of users in the system can be increased by adding new matching or exchanging matching under the premise of satisfying the constraint conditions, then the system is stable and achieves stable matching.
\end{myDef}

\section{Proposed Algorithm and Performance Analysis}
\begin{algorithm}[t]
\caption{Four-sided Matching Algorithm}
\label{alg:Framwork}
\begin{algorithmic}[1]
\STATE{\bf Phase I - Initialization:}
\STATE {Initialize data: $I,J,K,L,P_{i},P_{j},q_{i}^{u},q_{i}^{d},\sigma,W,\xi,\varepsilon$.}
\STATE {Each UE $i, i\in\mathcal{I}$, decides its own UL cell and DL\\DL cell. Each UE associates with $q_i^u$ BSs $j, j\in\mathcal{J}$, with the smallest $s_{i,j}$ in the UL cell and associates with $q_i^d$ BSs with the largest ${\rm SINR}_{i,j}$ in the DL cell.}
\STATE {The preference list of unit $\mathcal{T}$ is constructed for UE and BS respectively, by calculating \\ ~~~~~~$U_{i,j,k,l}=\gamma_{i,j}^{u}\theta_{i,j,k,l}^u\ U_{i,j,k,l}^u + \gamma_{i,j}^{d}\theta_{i,j,k,l}^d\ U_{i,j,k,l}^d$.}
\FORALL{ $t\in\mathcal{T}$}
\IF{ $C1,C2,C3\&C9$}
\IF{$C5\&C6$}
\STATE{Output the matching: \\
~~~~$\phi_{t}=({\rm UE}_{i}, {\rm BS}_{j}, {\rm SC}_{k}, {\rm PL}_{l}),\phi_{t}\in\Phi$;}
\ELSE
\STATE{Discard the UE with a lower $U_{i,j,k,l}$;}
\ENDIF
\ELSE
\STATE{$t=t+1$;}
\ENDIF
\ENDFOR
\STATE {Output the matching set $\Phi$.}
\STATE{\bf Phase II - Update the Matching:}
\STATE {Input the matching list $\Phi$ and the reject list $\Gamma$.}
\FORALL {$i\in\mathcal{I}$}
\FORALL{ $\phi_{i} \in \Phi$}
\WHILE{ $\phi_{block}^{(\cdot)}$ exists and is not in $\Gamma_i$ of UE $i$}
\STATE {Add a new match or swaps a match for UE $i$, updating the match as $\phi'_i$.}
\IF{$C5\&C6$}
\STATE{UE $i$ holds his current matching;}
\ELSE
\STATE{Discard the UE with the lowest $U_{i,j,k,l}$;}
\STATE{Add the $\phi'$ into $\Gamma_i$;}
\STATE {Re-match to the next most best choice from his preference list $\mathcal{T}_i$ until it is empty;}
\ENDIF
\ENDWHILE
\ENDFOR
\STATE {Update the preference list $\mathcal{T}'_i$ for UE $i$ in terms of the current match $\phi'_i$.}
\ENDFOR
\label{code:recentEnd}
\end{algorithmic}
\end{algorithm}

\begin{figure}[!t]
\centering
\includegraphics[width=3.6in]{eps/algorithm.eps}
\caption{The flow chart of the proposed algorithm.}
\label{algorithm}
\end{figure}

In order to evaluate the proposed algorithm, we analyze its performance from four aspects of stability, convergence, effectiveness and complexity.
\begin{prop}
\emph{Stability.}The four-sided algorithm is guaranteed to converge to a stable matching.
\label{stability}
\end{prop}
\begin{IEEEproof}
This proposition can be proved by the method of contradiction. From a contrary standpoint, we assume that, for UE $i$, there exists a matching $\Phi (i,j,k,l)$ produced by the proposed algorithm when converges and satisfying:
\begin{itemize}
\item[1)] $\exists j'\in\mathcal{J}, k'\in\mathcal{K}$ and $l'\in\mathcal{L}, U(\Phi^A_i) \geq U(\Phi_i) $ , and
\item[2)] $\exists j'\in\mathcal{J}, k'\in\mathcal{K}$ and $l'\in\mathcal{L}, U(\Phi^S_i) \geq U(\Phi_i) $.
\end{itemize}
Evidently it is a blocking matching.

By Definition \ref{block}, it is observed that if the proposed algorithm is not blocked by an individual, the existing matching $\Phi_i$ is four-sided stable. However, the existing of $U(\Phi^S_i) \geq U(\Phi_i) $ in matching result implies that the UE $i$ prefers$(j', k', l')$ to $(j, k, l)$ and rejects the request of $(j, k, l)$, and thereby, the multivariate of $i,j,k,l$ are unmatched. Besides, by referring to Phase II in Algorithm 1, the algorithm will not stop until all blocking matchings are excluded. Consequently, the analysis results contradicts with the assumption above, which means that the blocking matching $\Phi ^B_i$ for UE $i$ does not exis. Hence, the four-sided algorithm is proved to converge to a stable matching.
\end{IEEEproof}
\section{Simulation Results and Analysis}

In the simulation experiment, we consider...

\subsubsection{Convergence Analysis}
\

\noindent


The result concerning the convergence of Algorithm $1$ is investigated

%$&$

\subsubsection{Analysis of Performance}
\

\noindent

In this subsection, we first compare our proposed

\begin{figure}[!t]
\centering
\includegraphics[width=3.6in]{eps/diffQuota.eps}
\caption{diffQuota.}
\label{diffQuota}
\end{figure}


\section{Conclusions}

In this paper, we solve the problem of joint optimization

\bibliographystyle{IEEEtran}
\bibliography{cite}

\end{document}

3 图片 & 表格

3.1 图标资源

主要是绘制结构图会需要用到一些结构的小图标,可以从下面的网站中寻找。

  1. iconfont - 阿里巴巴矢量图标库
  2. 基站图标 - Icons8
  3. 数据库设计资源 – IconScout
  4. 波形矢量艺术 - Vecteezy
  5. 数据库图标 - Noun Project
  6. 波形图标 - Flaticon
  7. 手机图片 - Pixabay
  8. PC图片 - Adobe Stock

3.2 图片配色

3.3 图片导出

  • 工具:使用PowerPoint制作系统结构或流程图。

  • 方法

    1.使用PowerPoint直接转换为PDF。调整DPI设置以获得更高的质量。去PPT的高级选项卡里面找到不压缩图片,并且设置最高程度的dpi。如果你的图片存在留白的话,可能需要进行pdf裁剪。

    QQ截图20230904202635

    2.将PPT转换为EPS格式,有概率出现元素失真的情况。使用AnyConv进行转换。

  • 注意:对于Matplotlib生成的图像,保持高DPI并导出为LaTeX兼容的EPS或PDF格式。


3.4 表格

下面的网站能够直接生成表格代码,可以降低表格书写的难度。除了最基本的table,还可以使用更多样式的tabularx进行丰富的表格制作。

基本表格

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
\begin{table}[htbp]
\centering
\caption{EXPERIMENTAL PARAMETERS}
\small % <-- This command sets the font size to 'small'
\begin{tabularx}{\columnwidth}{>{\centering\arraybackslash}X >{\centering\arraybackslash}X}
\toprule
Parameter & Value \\
\midrule
Num. Nodes & 8 \\
Num. UEs & 20 \\
Transmit power(dBm) & 20 \\
Subchannel Bandwidth(MHz) & 5 \\
\multirow{2}{*}[+0.9ex]{Min. Computational Resource } & \multirow{2}{*}{2} \\
Allocation Unit(GHz)& \\

Background Noise(dBm) & -100 \\
Task Size(MB) & \(10 \sim 100\) \\
%UE's Computational Capability(GHz) & \(0.1 \sim 1\) \\
\multirow{2}{*}[+0.9ex]{UE's Computational} & \multirow{2}{*}{ \(0.1 \sim 1\)} \\
Capability(GHz) & \\

\multirow{2}{*}[+0.9ex]{Required CPU Cycles for} & \multirow{2}{*}{\(100 \sim 1000\)} \\
Comp. Task(Megacycle) & \\

\multirow{2}{*}[+0.9ex]{Unit Resource Bidding} & \multirow{2}{*}{ \(8 \sim 12\)} \\
Price & \\

Unit Resource Cost Price & \(2 \sim 8\) \\
Max. episodes & 4000 \\
Max. steps & 4 \\
Decay factor & 64 \\
Soft replacement & 0.01 \\
Discount factor & 0.99 \\
Memory capacity & 3000 \\
Batch size & 64 \\
\multirow{2}{*}[+0.9ex]{Learning rate of actor } & \multirow{2}{*}{0.0001} \\
network & \\
\multirow{2}{*}[+0.9ex]{Learning rate of critic} & \multirow{2}{*}{0.0002} \\
network & \\
\bottomrule
\end{tabularx}
\end{table}

多栏表格

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
\begin{table*}[htbp]
\centering
\caption{Comparison of Algorithms for Resource Allocation}
\scalebox{1}{
\begin{tabularx}{\textwidth}{c *{3}{>{\centering\arraybackslash}X} *{3}{>{\centering\arraybackslash}X} *{3}{>{\centering\arraybackslash}X}}
\toprule
& \multicolumn{3}{c}{\textbf{RL}} & \multicolumn{3}{c}{\textbf{GA}} & \multicolumn{3}{c}{\textbf{DP}} \\
\cmidrule(lr){2-4} \cmidrule(lr){5-7} \cmidrule(lr){8-10}
\textbf{Scenario (\( M, N \))} & \textbf{P} & \textbf{T} & \textbf{RU} & \textbf{P} & \textbf{T} & \textbf{RU} & \textbf{P} & \textbf{T} & \textbf{RU} \\
\midrule
(4, 2) & 869 & 233 & 82.83\% & 833 & 30 & 81.15\% & 602 & 1 & 70.34\% \\
(10, 4) & 1751 & 426 & 89.53\% & 1739 & 356 & 89.15\% & 1526 & 3 & 81.40\% \\
(20, 8) & 2462 & 1034 & 84.75\% & 2252 & 1605 & 77.50\% & 2147 & 15 & 73.74\% \\
(40, 16) & 5739 & 2520 & 90.15\% & 4856 & 5247 & 76.29\% & 4543 & 58 & 71.42\% \\
(100, 40) & 12626 & 7547 & 89.79\% & 10595 & 10490 & 75.33\% & 10133 & 297 & 72.10\% \\
(150, 60) & 15869 & 11835 & 91.18\% & 14012 & 19301 & 80.50\% & 11969 & 804 & 68.76\% \\
(20, 4) & 1798 & 668 & 87.84\% & 1733 & 943 & 84.73\% & 1698 & 9 & 82.82\% \\
(60, 15) & 5458 & 3107 & 87.73\% & 5052 & 6928 & 81.31\% & 4718 & 100 & 76.29\% \\
\bottomrule
\end{tabularx}
\smallskip
\begin{tabularx}{\textwidth}{@{}X@{}}
\end{tabularx}
\label{tab1}}
\end{table*}

Create LaTeX tables online – TablesGenerator.com

LaTeX 表格教程(使用 tabularx 完成自动换行) - 知乎 (zhihu.com)

3.5 公式

正常的公式编号,带有对应标签

1
2
3
\begin{equation}\label{eq5}
e_{ij} = p_i \frac{d_i}{r_{ij}} .
\end{equation}

优化问题类型的编号,给约束条件进行独立编号

1
2
3
4
5
6
7
8
9
\begin{subequations}
\small
\begin{align}
\max \quad U &= \sum_{i=1}^I U_{i}=\sum_{j=1}^{J} \sum_{i=1}^{I} [(\lambda_i^c - \beta_i^c)m_{ij} + (\lambda_i^w - \beta_i^w)n_{ij}]\tag{15} , \label{eq15} \\
\text{s.t. } & C1: \sum_{i=1}^{I} m_{i j} \leq C_{j}, \forall j \in J , \tag{15a} \label{eq15a} \\
& C2: \sum_{i=1}^{I} n_{i j} \leq W_{j}, \forall j \in J , \tag{15b} \label{eq15b} \\
& C3: \sum_{j=1}^{J} x_{ij} \le 1,0 \le x_{ij} \le 1 , \tag{15c} \label{eq15c}
\end{align}
\end{subequations}

LATEX 公式编号、子公式编号方法 - 知乎 (zhihu.com)

4 引用 & 参考文献

最最推荐的方式,就是做成bib文件,然后在Latex中直接引用

1
2
\bibliographystyle{IEEEtran}
\bibliography{cite}
  • 目标:将引用转换为BibTeX格式,下载成bib文件,然后转换为IEEE格式。
  • 工具在线BibTeX转IEEE转换器
  • 自定义:根据自己的要求进行微调,我主要是调整斜体和标点。
1
2
3
4
\begin{thebibliography}{00}
\bibitem{b1} T. Zhang, K. Zhu, 和 J. Wang, "Energy-Efficient Mode Selection 和 Resource Allocation for D2D-Enabled Heterogeneous Networks: A Deep Reinforcement Learning Approach", \emph{IEEE Transactions on Wireless Communications}, vol. 20, pp. 1175–1187, 2021.
\bibitem{b2} M. K. Tefera, S. Zhang, 和 Z. Jin, "Deep Reinforcement Learning-Assisted Optimization for Resource Allocation in Downlink OFDMA Cooperative Systems", \emph{Entropy}, vol. 25, p. 413, 2023.
\end{thebibliography}

5 论文查重

要求:多数国际期刊拒绝总重复率超过30%或单一引用源重复率超过5%的稿件;实际标准取决于投稿期刊的具体要求。

平台:投必得(Topedit),防止淘宝不靠谱,网址如下:
iThenticate-论文自助查重系统,iThenticate论文查重大中华区正版授权方 (topeditsci.com)

2023.8.28日的价格是,5次以下59元/次,≥5次就是49.2元/次。

最后给的是一个在线格式的报告。里面能够看到整体的重复率,和单篇的文章重复率。会用不同的颜色和标记来区分。每一篇的重复地方,你可以直接在网页上找到,改起来很方便。

查重报告

然后需要对重复的内容进行改写

内容生成+润色:ChatGPT

能够产生部分的思路参考,还能够解决一些问题。但是在具体的英文润色上,语言不太行,容易使用不是论文语言的形式。

https://chat.openai.com/chat

英文润色:quillbot

在论文的润色方面比ChatGPT好多了

QuillBot:又一个值得拥有的论文润色工具 - 知乎 (zhihu.com)

Paraphrasing Tool - QuillBot AI

6 EDAS 论文系统提交

投IEEE会议用的这个EDAS系统对论文检查很恶心。会出现很多奇怪的问题。目前比较好的建议是先正常写论文,等最后提交的时候就专注修改格式即可。

大家都可以先交一个空文档,先把文档格式调对。然后一点一点加内容,我之前也会出这个问题,不过重新开始弄之后就能提交了。这个系统的报错有时会误导人(很有可能它报错的位置就不是你出问题的地方)。用会议模板,删掉正文,然后看能不能上传成功。然后一次加一点,报错就找这次加的公式和图片,基本问题就在这两东西上。我改了一天,最后还是这个重写法成功了。而且开头用a4paper,会pagenumber错误,网上都没有这个错误,还有超大表格。主要就这几个东西,基本没有文本出错的。

下面是一些常规的解法:

1.出现上下左右边距(margin)异常和栏距(columnsep)错误,在\begin{document}前面添加,可以限制边距,根据边界信息调一下数值。

1
2
3
4
5
% 调整边距
\usepackage{geometry}
\geometry{top=0.75 in,left=0.63 in, right=0.63 in, bottom=1.05 in}
% 调整栏距
\setlength{\columnsep}{0.24 in}

2.在class处添加a4paper可能有用可能没用,反正我是没用。

1
\documentclass[a4paper,conference]{IEEEtran}

3.字体嵌入 Time New Roman is not embedded,用pdf软件 adobe或者福昕都可以,打印一下,端口选择adobe pdf或者 Foxit都可以,点击属性,选择字体,把缺的字体补上保存到一个xml配置文件中,然后应用,打印之后的pdf嵌入就解决了。除此之外,也可以直接使用Microsoft print to PDF直接打印,这样也能解决字体嵌入问题。

群友们投稿时经常遇到gutter,margin等问题,这些问题之前群友们有过如下的解决方案:

  1. \setlength{\columnsep}{0.241 in}
    \usepackage[left=0.673in,right=0.673in,top=0.751in,bottom=1.05in]{geometry}

把这段代码放到\begin{document}前

  1. 遇到gutter问题,可以先看看图片的标题是否超过图片边框了,如果超过了,生成图片的时候就让标题换行。
  2. 可以把图片改小一些,给图片多留一些padding。
  3. 实在不行可以先删除原来的图片和表格,再一点一点添加,看问题可能出在哪里。
  4. 对于超出页数的收费问题,注册前会在网站上通知的。
  5. 对于查重问题,查重是全篇文章查的,包括参考文献在内的。

Submission deadline是投稿的时间(论文初稿);Author Notification 是会务组通知作者文章录取情况的时间;Camera-ready submission是被录用的文章,作者根据reviewers的comments修改后,提交终稿的时间。

其他资源


IEEE论文从零入门指南
https://fulequn.github.io/2023/08/Article202308221/
作者
Fulequn
发布于
2023年8月22日
许可协议