参考链接:
http://blog.fens.me/r-multi-linear-regression/
前言
本文接上一篇R语言解读一元线性回归模型 。在许多生活和工作的实际问题中,影响因变量的因素可能不止一个,比如对于知识水平越高的人,收入水平也越高,这样的一个结论。这其中可能包括了因为更好的家庭条件,所以有了更好的教育;因为在一线城市发展,所以有了更好的工作机会;所处的行业赶上了大的经济上行周期等。要想解读这些规律,是复杂的、多维度的,多元回归分析方法更适合解读生活的规律。
由于本文为非统计的专业文章,所以当出现与教课书不符的描述,请以教课书为准。本文力求用简化的语言,来介绍多元线性回归的知识,同时配合R语言的实现。
目录
多元线性回归介绍 元线性回归建模 模型优化 案例:黑色系期货日K线数据验证 1. 多元线性回归介绍对比一元线性回归,多元线性回归是用来确定2个或2个以上变量间关系的统计分析方法。多元线性回归的基本的分析方法与一元线性回归方法是类似的,我们首先需要对选取多元数据集并定义数学模型,然后进行参数估计,对估计出来的参数进行显著性检验,残差分析,异常点检测,最后确定回归方程进行模型预测。
由于多元回归方程有多个自变量,区别于一元回归方程,有一项很重要的操作就是自变量的优化,挑选出相关性最显著的自变量,同时去除不显著的自变量。在R语言中,有很方便地用于优化函数,可以很好的帮助我们来改进回归模型。
下面就开始多元线性回归的建模过程。
2. 多元线性回归建模做过商品期货研究的人,都知道黑色系品种是具有产业链上下游的关系。铁矿石是炼钢的原材料,焦煤和焦炭是炼钢的能源资源,热卷即热轧卷板是以板坯为原料经加热后制成的钢板,螺纹钢是表面带肋的钢筋。
由于有产业链的关系,假设我们想要预测螺纹钢的价格,那么影响螺纹钢价格的因素可以会涉及到原材料,能源资源和同类材料等。比如,铁矿石价格如果上涨,螺纹钢就应该要涨价了。
2.1 数据集和数学模型
先从数据开始介绍,这次的数据集,我选择的期货黑色系的品种的商品期货,包括了大连期货交易所的 焦煤(JM),焦炭(J),铁矿石(I),上海期货交易所的 螺纹钢(RU) 和 热卷(HC)。
数据集为2016年3月15日,当日白天开盘的交易数据,为黑色系的5个期货合约的分钟线的价格数据。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 # 数据集已存在df变量中 > head(df,20 ) x1 x2 x3 x4 y2016-03-15 09 :01:00 754 .5 616.5 426 .5 2215 2055 2016-03-15 09 :02:00 752 .5 614.5 423 .5 2206 2048 2016-03-15 09 :03:00 753 .0 614.0 423 .0 2199 2044 2016-03-15 09 :04:00 752 .5 613.0 422 .5 2197 2040 2016-03-15 09 :05:00 753 .0 615.5 424 .0 2198 2043 2016-03-15 09 :06:00 752 .5 614.5 422 .0 2195 2040 2016-03-15 09 :07:00 752 .0 614.0 421 .5 2193 2036 2016-03-15 09 :08:00 753 .0 615.0 422 .5 2197 2043 2016-03-15 09 :09:00 754 .0 615.5 422 .5 2197 2041 2016-03-15 09 :10:00 754 .5 615.5 423 .0 2200 2044 2016-03-15 09 :11:00 757 .0 616.5 423 .0 2201 2045 2016-03-15 09 :12:00 756 .0 615.5 423 .0 2200 2044 2016-03-15 09 :13:00 755 .5 615.0 423 .0 2197 2042 2016-03-15 09 :14:00 755 .5 615.0 423 .0 2196 2042 2016-03-15 09 :15:00 756 .0 616.0 423 .5 2200 2045 2016-03-15 09 :16:00 757 .5 616.0 424 .0 2205 2052 2016-03-15 09 :17:00 758 .5 618.0 424 .0 2204 2051 2016-03-15 09 :18:00 759 .5 618.5 424 .0 2205 2053 2016-03-15 09 :19:00 759 .5 617.5 424 .5 2206 2053 2016-03-15 09 :20:00 758 .5 617.5 423 .5 2201 2050
数据集包括有6列:
索引, 为时间 x1, 为焦炭(j1605)合约的1分钟线的报价数据 x2, 为焦煤(jm1605)合约的1分钟线的报价数据 x3, 为铁矿石(i1605)合约的1分钟线的报价数据 x4, 为热卷(hc1605)合约的1分钟线的报价数据 y, 为螺纹钢(rb1605)合约的1分钟线的报价数据 假设螺纹钢的价格与其他4个商品的价格有线性关系,那么我们建立以螺纹钢为因变量,以焦煤、焦炭、铁矿石和热卷的为自变量的多元线性回归模型。用公式表示为:
1 y = a + b * x1 + c * x2 + d * x3 + e * x4 + ε
y,为因变量,螺纹钢 x1,为自变量,焦煤 x2,为自变量,焦炭 x3,为自变量,铁矿石 x4,为自变量,热卷 a,为截距 b,c,d,e,为自变量系数 ε, 为残差,是其他一切不确定因素影响的总和,其值不可观测。假定ε服从正态分布N(0,σ^2)。 通过对多元线性回归模型的数学定义,接下来让我们利用数据集做多元回归模型的参数估计。
2.2. 回归参数估计
上面公式中,回归参数 a, b, c, d,e都是我们不知道的,参数估计就是通过数据来估计出这些参数,从而确定自变量和因变量之前的关系。我们的目标是要计算出一条直线,使直线上每个点的Y值和实际数据的Y值之差的平方和最小,即(Y1实际-Y1预测)2+(Y2实际-Y2预测) 2+ …… +(Yn实际-Yn预测)^2 的值最小。参数估计时,我们只考虑Y随X自变量的线性变化的部分,而残差ε是不可观测的,参数估计法并不需要考虑残差。
类似于一元线性回归,我们用R语言来实现对数据的回归模型的参数估计,用lm()函数来实现多元线性回归的建模过程。
1 2 3 4 5 6 7 8 9 10 11 12 > lm1<-lm(y~x1 +x2 +x3 +x4 ,data =df ) > lm1Call: lm (formula = y ~ x1 + x2 + x3 + x4 , data = df)Coefficients: (Intercept) x1 x2 x3 x4 212 .8780 0 .8542 0 .6672 -0 .6674 0 .4821
这样我们就得到了y和x关系的方程。
1 y = 212 .8780 + 0 .8542 * x1 + 0 .6672 * x2 - 0 .6674 * x3 + 0 .4821 * x4
2.3. 回归方程的显著性检验
参考一元线性回归的显著性检验,多元线性回归的显著性检验,同样是需要经过 T检验,F检验,和R^2(R平方)相关系统检验。在R语言中这三种检验的方法都已被实现,我们只需要把结果解读,我们可以summary()函数来提取模型的计算结果。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 > summary(lm1) Call: lm(formula = y ~ x1 + x2 + x3 + x4, data = df) Residuals: Min 1Q Median 3Q Max -4.9648 -1.3241 -0.0319 1.2403 5.4194 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 212.87796 58.26788 3.653 0.000323 *** x1 0.85423 0.10958 7.795 2.50e-13 *** x2 0.66724 0.12938 5.157 5.57e-07 *** x3 -0.66741 0.15421 -4.328 2.28e-05 *** x4 0.48214 0.01959 24.609 < 2e-16 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 2.028 on 221 degrees of freedom Multiple R-squared: 0.9725 , Adjusted R-squared: 0.972 F-statistic: 1956 on 4 and 221 DF, p-value: < 2.2e-16
T检验:所自变量都是非常显著*** F检验:同样是非常显著,p-value < 2.2e-16 调整后的R^2:相关性非常强为0.972 最后,我们通过的回归参数的检验与回归方程的检验,得到最后多元线性回归方程为:
1 2 3 4 5 y = 212.87796 + 0.85423 * x1 + 0.66724 * x2 - 0.66741 * x3 + 0.48214 * x4 即 螺纹钢 = 212.87796 + 0.85423 * 焦炭 + 0.66724 * 焦煤 - 0.66741 * 铁矿石 + 0.48214 * 热卷
2.4 残差分析和异常点检测
在得到的回归模型进行显著性检验后,还要在做残差分析(预测值和实际值之间的差),检验模型的正确性,残差必须服从正态分布N(0,σ^2)。直接用plot()函数生成4种用于模型诊断的图形,进行直观地分析。
1 2 > par (mfrow=c (2 ,2 ))> plot (lm1)
残差和拟合值(左上),残差和拟合值之间数据点均匀分布在y=0两侧,呈现出随机的分布,红色线呈现出一条平稳的曲线并没有明显的形状特征。 残差QQ图(右上),数据点按对角直线排列,趋于一条直线,并被对角直接穿过,直观上符合正态分布。 标准化残差平方根和拟合值(左下),数据点均匀分布在y=0两侧,呈现出随机的分布,红色线呈现出一条平稳的曲线并没有明显的形状特征。 标准化残差和杠杆值(右下),没有出现红色的等高线,则说明数据中没有特别影响回归结果的异常点。 结论,没有明显的异常点,残差符合假设条件。
2.5. 模型预测
我们得到了多元线性回归方程的公式,就可以对数据进行预测了。我们可以用R语言的predict()函数来计算预测值y0和相应的预测区间,并把实际值和预测值一起可视化化展示。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 > par( mfrow= c ( 1 , 1 ) ) > dfp<- predict( lm1, interval= "prediction" ) > head( dfp, 10 ) fit lwr upr2014 - 03 - 21 3160.526 3046.425 3274.626 2014 - 03 - 24 3193.253 3078.868 3307.637 2014 - 03 - 25 3240.389 3126.171 3354.607 2014 - 03 - 26 3228.565 3114.420 3342.710 2014 - 03 - 27 3222.528 3108.342 3336.713 2014 - 03 - 28 3262.399 3148.132 3376.666 2014 - 03 - 31 3291.996 3177.648 3406.344 2014 - 04 - 01 3305.870 3191.447 3420.294 2014 - 04 - 02 3275.370 3161.018 3389.723 2014 - 04 - 03 3297.358 3182.960 3411.755 > mdf<- merge( df$ y, dfp) > draw( mdf)
图例说明
y, 实际价格,红色线 fit, 预测价格,绿色线 lwr,预测最低价,蓝色线 upr,预测最高价,紫色线 从图中看出,实际价格y和预测价格fit,在大多数的时候都是很贴近的。我们的一个模型就训练好了!
3. 模型优化上文中,我们已经很顺利的发现了一个非常不错的模型。如果要进行模型优化,可以用R语言中update()函数进行模型的调整。我们首先检查一下每个自变量x1,x2,x3,x4和因变量y之间的关系。
1 pairs (as .data .frame(df ))
从图中,我们可以发现x2与Y的关系,可能是最偏离线性的。那么,我们尝试对多元线性回归模型进行调整,从原模型中去掉x2变量。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 > lm2<- update( lm1, .~ . - x2) > summary( lm2) Call: lm( formula = y ~ x1 + x3 + x4, data = df) Residuals: Min 1 Q Median 3 Q Max - 6.0039 - 1.3842 0.0177 1.3513 4.8028 Coefficients: Estimate Std. Error t value Pr( > | t| ) ( Intercept) 462.47104 34.26636 13.50 < 2e-16 * * * x1 1.08728 0.10543 10.31 < 2e-16 * * * x3 - 0.40788 0.15394 - 2.65 0.00864 * * x4 0.42582 0.01718 24.79 < 2e-16 * * * - - - Signif. codes: 0 ‘* * * ’ 0.001 ‘* * ’ 0.01 ‘* ’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 2.142 on 222 degrees of freedom Multiple R- squared: 0.9692 , Adjusted R- squared: 0.9688 F - statistic: 2330 on 3 and 222 DF, p- value: < 2.2e-16
当把自变量x2去掉后,自变量x3的T检验反而变大了,同时Adjusted R-squared变小了,所以我们这次调整是有问题的。
如果通过生产和原材料的内在逻辑分析,焦煤与焦炭属于上下游关系。焦煤是生产焦炭的一种原材料,焦炭是焦煤与其他炼焦煤经过配煤焦化形成的产品,一般生产 1 吨焦炭需要1.33 吨炼焦煤,其中焦煤至少占 30% 。
我们把焦煤和焦炭的关系改变一下,增加x1*x2的关系匹配到模型,看看效果。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 > lm3<- update( lm1, .~ . + x1* x2) > summary( lm3) Call: lm( formula = y ~ x1 + x2 + x3 + x4 + x1: x2, data = df) Residuals: Min 1 Q Median 3 Q Max - 4.8110 - 1.3501 - 0.0595 1.2019 5.3884 Coefficients: Estimate Std. Error t value Pr( > | t| ) ( Intercept) 7160.32231 7814.50048 0.916 0.361 x1 - 8.45530 10.47167 - 0.807 0.420 x2 - 10.58406 12.65579 - 0.836 0.404 x3 - 0.64344 0.15662 - 4.108 5.63e-05 * * * x4 0.48363 0.01967 24.584 < 2e-16 * * * x1: x2 0.01505 0.01693 0.889 0.375 - - - Signif. codes: 0 ‘* * * ’ 0.001 ‘* * ’ 0.01 ‘* ’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 2.029 on 220 degrees of freedom Multiple R- squared: 0.9726 , Adjusted R- squared: 0.972 F - statistic: 1563 on 5 and 220 DF, p- value: < 2.2e-16
从结果中发现,增加了x1*x2列后,原来的x1,x2和Intercept的T检验都不显著。继续调整模型,从模型中去掉x1,x2两个自变量。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 > lm4<- update( lm3, .~ . - x1- x2) > summary( lm4) Call: lm( formula = y ~ x3 + x4 + x1: x2, data = df) Residuals: Min 1 Q Median 3 Q Max - 4.9027 - 1.2516 - 0.0167 1.2748 5.8683 Coefficients: Estimate Std. Error t value Pr( > | t| ) ( Intercept) 6.950e+02 1.609e+01 43.183 < 2e-16 * * * x3 - 6.284e-01 1.530e-01 - 4.108 5.61e-05 * * * x4 4.959e-01 1.785e-02 27.783 < 2e-16 * * * x1: x2 1.133e-03 9.524e-05 11.897 < 2e-16 * * * - - - Signif. codes: 0 ‘* * * ’ 0.001 ‘* * ’ 0.01 ‘* ’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 2.035 on 222 degrees of freedom Multiple R- squared: 0.9722 , Adjusted R- squared: 0.9718 F - statistic: 2588 on 3 and 222 DF, p- value: < 2.2e-16
从调整后的结果来看,效果还不错。不过,也并没有比最初的模型有所提高。
对于模型调整的过程,如果我们手动调整测试时,一般都会基于业务知识来操作。如果是按照数据指标来计算,我们可以用R语言中提供的逐步回归的优化方法,通过AIC指标来判断是否需要参数优化。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 > step(lm1)Start: AIC=324 .51 y ~ x1 + x2 + x3 + x4 Df Sum of Sq RSS AIC 908 .8 324 .51 - x3 1 77 .03 985 .9 340 .90 - x2 1 109 .37 1018 .2 348 .19 - x1 1 249 .90 1158 .8 377 .41 - x4 1 2490 .56 3399 .4 620 .65 Call: lm (formula = y ~ x1 + x2 + x3 + x4 , data = df)Coefficients: (Intercept) x1 x2 x3 x4 212 .8780 0 .8542 0 .6672 -0 .6674 0 .4821
通过计算AIC指标,lm1的模型AIC最小时为324.51,每次去掉一个自变量都会让AIC的值变大,所以我们还是不调整比较好。
对刚才的lm3模型做逐步回归的模型调整。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 > step(lm3)Start: AIC=325 .7 #当前AIC y ~ x1 + x2 + x3 + x4 + x1 :x2 Df Sum of Sq RSS AIC - x1 :x2 1 3 .25 908 .8 324 .51 905 .6 325 .70 - x3 1 69 .47 975 .1 340 .41 - x4 1 2487 .86 3393 .5 622 .25 Step: AIC=324 .51 #去掉x1 *x2 项的AIC y ~ x1 + x2 + x3 + x4 Df Sum of Sq RSS AIC 908 .8 324 .51 - x3 1 77 .03 985 .9 340 .90 - x2 1 109 .37 1018 .2 348 .19 - x1 1 249 .90 1158 .8 377 .41 - x4 1 2490 .56 3399 .4 620 .65 Call: lm (formula = y ~ x1 + x2 + x3 + x4 , data = df)Coefficients: (Intercept) x1 x2 x3 x4 212 .8780 0 .8542 0 .6672 -0 .6674 0 .4821
通过AIC的判断,去掉X1*X2项后AIC最小,最后的检验结果告诉我们,还是原初的模型是最好的。
4. 案例:黑色系期货日K线数据验证最后,我们用上面5个期货合约的日K线数据测试一下,找到多元回归关系。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 > lm9<-lm(y~x1+x2+x3+x4,data=df) > summary(lm9) Call: lm(formula = y ~ x1 + x2 + x3 + x4, data = df) Residuals: Min 1Q Median 3Q Max -173.338 -37.470 3.465 32.158 178.982 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 386.33482 31.07729 12.431 < 2e-16 *** x1 0.75871 0.07554 10.045 < 2e-16 *** x2 -0.62907 0.14715 -4.275 2.24e-05 *** x3 1.16070 0.05224 22.219 < 2e-16 *** x4 0.46461 0.02168 21.427 < 2e-16 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 57.78 on 565 degrees of freedom Multiple R-squared: 0.9844 , Adjusted R-squared: 0.9843 F-statistic: 8906 on 4 and 565 DF, p-value: < 2.2e-16
数据集的基本统计信息。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 > summary( df) Index x1 x2 Min. : 2014 - 03 - 21 00 : 00 : 00 Min. : 606.5 Min. : 494.0 1 st Qu.: 2014 - 10 - 21 06 : 00 : 00 1 st Qu.: 803.5 1 st Qu.: 613.1 Median : 2015 - 05 - 20 12 : 00 : 00 Median : 939.0 Median : 705.8 Mean : 2015 - 05 - 21 08 : 02 : 31 Mean : 936.1 Mean : 695.3 3 rd Qu.: 2015 - 12 - 16 18 : 00 : 00 3 rd Qu.: 1075.0 3 rd Qu.: 773.0 Max. : 2016 - 07 - 25 00 : 00 : 00 Max. : 1280.0 Max. : 898.0 x3 x4 y Min. : 284.0 Min. : 1691 Min. : 1626 1 st Qu.: 374.1 1 st Qu.: 2084 1 st Qu.: 2012 Median : 434.0 Median : 2503 Median : 2378 Mean : 476.5 Mean : 2545 Mean : 2395 3 rd Qu.: 545.8 3 rd Qu.: 2916 3 rd Qu.: 2592 Max. : 825.0 Max. : 3480 Max. : 3414
对于日K线数据,黑色系的5个品种,同样具有非常强的相关关系,那么我们就可以把这个结论应用到实际的交易中了。
本文通过多元回归的统计分析方法,介绍多元回归在金融市场的基本应用。我们通过建立因变量和多个自变量的模型,从而发现生活中更复杂的规律,并建立有效的验证指标。让我们我们的技术优势,去金融市场抢钱吧。